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An extension is presented of the well-known Geroch-Held-Penrose (GHP) 
formalism, itself an extension of the still better known Newman-Penrose (NP) 
formalism. The extended formalism given here uses only quantities that transform 
properly under all diagonal transformations of the spin frame, that is, not only 
under boost-rotations, but also under conformal rescalings. Full use is made of 
the formalism's symmetry under all discrete operations, that is, under conjuga- 
tion, the prime operation, and the (modified) Sachs transformations. Just as the 
GHP formalism is considerably simpler than the NP formalism in the case where 
a spacelike surface is singled out in a natural way, so the present formalism 
leads to further simplification when a conformal spacelike surface can be singled 
out. This is the case, for example, in considerations of future null infinity. In 
general situations all three formalisms are on an equal footing. 

1. I N T R O D U C T I O N  

The N e w m a n - P e n r o s e  (NP) formal ism ( N e w m a n  and  Penrose,  1962), 
also called the spin-coefficient formalism, is well know n  and  has long shown 
its usefulness,  for ins tance,  in f inding solut ions to the Eins te in  field 
equat ions.  Slightly less well known  is an  ex tens ion  called the compacted  
spin-coefficient formal ism or G e r o c h - H e l d - P e n r o s e  (GHP)  formal ism 

(Geroch et al., 1973; Penrose and  Rindler ,  1984). It is on  an  equal  foot ing 
with the former,  in the sense that either formal ism may be used in any one 

si tuat ion,  bu t  it leads to considerable  simplif icat ions in cases where a 
spacelike surface (and hence  two nul l  directions,  l and  n) may be singled 

out  in a na tura l  way. It deals only  with quant i t ies  that " t rans form proper ly"  
unde r  those Lorentz t ransformat ions  that leave invar ian t  the two nul l  direc- 
t ions, i.e., unde r  boosts  in the l - n  plane  and  unde r  rotat ions in the m-r~  
p lane  pe rpend icu la r  to these two nul l  directions.  
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The formalism to be described in this paper goes one step further and 
uses only quantities that transform properly under all diagonal transforma- 
tions of  the underlying spin frame, that is, not only under boost-rotations, 
but also under conformal rescalings. It is particularly suited to situations 
where a conformal spacelike surface can be singled out in a natural way, 
as happens, for instance, in considerations of future null infinity. However, 
it must be stressed that it is as general a formalism as the NP or G H P  
formalisms. 

Such a formalism was alluded to by Penrose and Rindler (1984), but 
was left in a rather rudimentary state. We shall make the following contribu- 
tions to this problem. 

First, Penrose and Rindler seem to consider boost-rotations and confor- 
mal rescalings as unrelated entities. We prefer to see them as different 
diagonal transformations (Ludwig, 1986a) of the spin frame. The ambiguity 
as to precisely what conformal rescaling to consider now largely disappears. 

Second, the differential operators used by Penrose and Rindler turn 
out, contrary to first appearance, to be more cumbersome than a second, 
more symmetrical set also briefly mentioned by them. 

Third, we shall show in detail what happens to all quantities of  interest, 
such as the spin coefficients and components of the Ricci tensor. We shall 
also write out all NP equations, i.e., spin-coefficient equations, commutator 
equations, and Bianchi identities, in the new formalism. 

Fourth, with very little extra work the formalism is extended to the 
complex case. The study of complex general relativity has recently gained 
some importance (Mclntosh and Hickman, 1985) and the NP formalism 
was found to be readily adaptable to this complex case. The spin frame 
consists of  two dyads (0 A, I, A) and (t~ a,/-A), which are complex conjugates 
of  each other in the "real"  case, but are independent of each other in the 
more general complex case. In general, they transform according to indepen- 
dent (instead of complex conjugate) complex 2 x 2 matrices. 

Fifth, in the NP formalism conjugation plays a major role, as do both 
conjugation and the prime operation in the G H P  formalism. A third discrete 
transformation of the spin frame, the Sachs (star) operation, was briefly 
mentioned in the original paper of Geroch et al. (1984), but was never fully 
utilized. In the formalism to be described, conjugation and slightly modified 
versions (Ludwig, 1986b) of  both the prime and star operations will play 
a fundamental role, not the least of  which is to minimize the number of 
equations that need to be written down explicitly. We therefore start by 
reviewing these discrete operations in the next section. 

In a fashion analogous to the GHP notation, we could make full use 
of the discrete operations described in Section 2 and write, for example, K, 
K', r* ,  K'* instead of K, --~', tr, - h ,  respectively. We give full details of  this 



Extended Geroch-Held-Penrose Formalism 317 

logical extension of the GHP notation in Appendix C. However, in order 
to avoid notational bedlam in the remainder of the paper, we continue to 
employ the NP names for the various NP quantities and make frequent use 
of the transformation formulas of Appendix A to write down the primed, 
starred, and primed starred versions of various equations. 

2. THE DISCRETE TRANSFORMATIONS 

A recent paper (Ludwig, 1987) dealt with complex Lorentz transforma- 
tions and complex rescalings in a unified manner, treating them as elements 
of GL(2, C)| C) acting on the spin frame, where GL(2, C) is the 
complex general linear group in two dimensions. Our terminology and 
notation are ~ased on this paper. 

Another paper (Ludwig, 1986b) discussed in some detail those elements 
of this group that simply permute the null tetrad vectors. Included among 
these are the following discrete transformations. 

1. The basic reflection (conjugation), which interchanges tilded and 
untilded quantities. 

2. The (modified) GHP prime transformation (the prime operation) 

3. The (modified) right Sachs transformation (the star operation), 

4. Their product (the prime-star operation), the (modified) left Sachs 
transformation, 

where I is the two-dimensional identity matrix. In addition, there are the 
products of conjugation with each of the last three operations. 

The transformation laws, for various quantities of interest,, under the 
first three of these operations are listed in Appendix A. The prime operation 
commutes with both the star operation and conjugation. The latter two do 
not commute, however. Instead, for any quantity ~7 being transformed we 
have 

(,~)* = ( n ' * )  
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Our modified prime operation differs from the GHP prime operation 

,=i(0i o,)} 
by a pure spin transformation (Ludwig, 1987) S =  {-i/,  iI}, i.e., L1 = SP. 
Therefore, L1 and P have the same effect on tensor-related quantities such 
as the spin coefficients. Using the fact that P2= {-I, -I} ,  a pure spin 
transformation, it is not hard to show that for the GHP prime operation, 
r/"= (-1)"-%7, or equivalently, ~"= (--1)P+q'q (for the definitions of the 
weights m, n, p, q see below), whereas for our modified prime operation, 
we have 77"= r/. 

Let us now turn our attention to the star operation. Our modified 
version of a right Sachs transformation has been discussed previously 
(Ludwig, 1986b). It is the original star operation preceded by the basic right 
conformal transformation 

The latter multiplied each NP variable by +1 or -1;  in particular, it 
multiplies the metric by -1. The main reason for our modification is that 
there are no longer any "hard-to-remember" minus signs in the transforma- 
tion laws for the NP variables, as Appendix A2 shows. Note also that 

r/** = 7- 
The importance of these discrete transformations for our purposes lies 

in the fact that they can be used to generate the NP equations from a basic 
few. In fact, using the numbering of the original NP paper (Newman and 
Penrose, 1962), the spin-coefficient equations may be split into the following 
eight sets: 

(i) Equation (NP4.2a) and its primed, starred, and primed starred 
versions, given, respectively, by equations (NP4.2n), (NP4.2p), 
and (NP4.2g). 

(ii) Equation (NP4.2c) and its primed, starred, and primed starred 
versions given, respectively, by equations (NP4.2i), (NP4.2k), 
and (NP4.2m). 

(iii) Equation (NP4.2b) and its primed, starred and primed version, 
equation (NP4.2j). The star operation leaves both of these 
equations invariant. 

(iv), (v) The sum and the difference of (NP4.2h) and (NP4.2q). Both 
remain invariant under both the star and the prime operations. 

(vi) Equation (NP4.2d) and its primed (or starred) version 
(NP4.2o). 

(vii) Equation (NP4.2e) and its primed version (NP4.2r). The star 
operation leaves both of these equations invariant. 
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(viii) Equation (NP4.2f) and its starred version (NP4.21). The prime 
operation leaves both of these equations invariant. 

It must be emphasized that in addition to these equations, we must 
also consider their conjugates. 

Let us interject a word about our way of labeling equations in this 
paper. Many of our equations will split naturally into sets such that within 
each set all equations can be obtained from one key equation via the discrete 
transformations, just as was the case for the spin-coefficient equations. 
Labeling this key equation as (a), equations (a'), (a*), (fi), etc., will 
then refer to, respectively, the prime transform, the star transform, the 
conjugate, etc., of equation (a). More often than not, for the sake of brevity, 
we shall write out explicitly only the key equation for such a set. 

Let us next look at the Bianchi identities as they are listed in Pirani 
(1965). There are three sets, and in the order presented there they may be 
numbered as (Pla), (Pla*), (P2a), (P2a*), (P2a'*), (P2a'), (Pla'*), (Pla'), 
(P3a), (P3a*), P3a'). The conjugates of the first two sets of equations must 
be considered as well. As for the third set, we need only add the conjugate 
of (P3a*). This is so since (P3a) and (P3a') are invariant under conjugation 
and (P3a'*) = (P3a*). 

The six independent commutator equations, four of which are given 
by equations (NP(4.4), may be split into two sets. If we label the first two 
of these equations [as they appear in (NP4.4)] as (a) and (b), then the other 
two are (b') and (a*); the remaining two, not listed explicitly in (NP4.4), 
are (i~) and (b'). To verify that there are no further commutator equations 
to be obtained by applying the discrete transformations to equations (a) 
and (b), note that equations (a) and (a*) are invariant under conjugation 
and under the prime operation, that equations (b) and (b') are invariant 
under the star operation, and that equations (1~) and (1~') get interchanged 
under the star operation. 

Similarly, the Maxwell equations, as listed in equation (NP,A1), may 
be labeled, in order, as (a), (a'*), (a*), (a'). In addition there are the 
equations conjugate to these. 

3. THE DIAGONAL TRANSFORMATIONS 

Of special interest among the GL(2, C)|163 C) transformations 
of the spin frame are the diagonal elements 

{(o ~ o)} 
where ad~d # O, since they include not only rotations in the m-r~ plane 
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and boosts in the l - n  plane, but also basic conformal rescalings and pure 
spin transformations. Whereas the GHP formalism deals only with the first 
two of these four transformations, the formalism to be developed here is 
covariant under all diagonal transformations. Our aim is to rewrite the NP 
equations in such a way that each term is a properly weighted quantity not 
just under boost-rotations, but under all diagonal transformations. 

For such diagonal elements the two conformal factors are given by 

0 = (ad)  - l  and ~=  ( ~ ) - 1  (1) 

Equivalently, we can deal with II and to defined, respectively, by 

~'~ : ( 0 0 )  1/2, to = (00 - -1 )  1/4 (2) 

According to Appendix A, the components ~ i ,  ~ t  (i = 0 , . . . ,  4) of the 
Weyl tensor as well as the spin coefficients ~, p -  t;, and the transforms of 
these under the discrete transformations, i.e., 

~, ~, A, ~,, ~, ~, ~, ~, p - ~ ,  ~ - ~ ,  ~+ ~, ~+~, 

transform as properly weighted quantities under diagonal transformations. 
The remaining spin coefficients and the components of the Ricci tensor do 
not. Instead we have the following sets of transformation laws. For the spin 
coefficients 

and 

+ ~ = a~[p + ~ - 2 D  In ~3 

t2 +/~ = dd[/x +/~ + 2A In l-l] 

7 -  7r = a d [ ~ -  ~ - 2 8  In 12] 

- 7 = dais" - -7+ 28 In l-l] 

(3a) 

(3a') 

(3a*) 

(3a'*) 

= a~[e + D In to~d] 

~,= dd[ y - A  ln to/ a] 

/3 = ad[/3 + 8 In to ld]  

= d~[a  - ~ In to~a] 

(4a) 

(4a') 

(4a*) 

(4a'*) 

as well as the conjugates of equations (4). Conjugation of equations (3) 
leads to no further equations; (3a) and (3a') are left invariant and (3a*) 
and (3a'*) are interchanged. Again it should be noted that the last three of 
equations (3), for instance, can be obtained from the first by means of the 
transformation laws of Appendix A. In the following we shall usually write 
down explicitly only one equation of such a set. 
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The Ricci tensor transformation laws (Ludwig, 1978) split into the 
following sets: 

~oo = a2a2[~oo- D2 In 1)+ (D In 1))2+ (e + ~)D In 1) 

- ~6  In f~ - Kg In 1)] (5a)  

plus (5a'), (5a*), (5a'*), 

~o~ = a2ad[qbo~ - D 6  In 1) + (D In 1))6 In f~ + ~D In 1) 

+ (e - g)6 In 1) - KA In 1)] (6a) 

plus (6a'), (6a), (6~'), 

d~11 = lad~td[2dpH - D A  In 1) + (D In 1))A In 1) -/56 In f~ 

+ ( g i n  ft)6 In f~ +/2D In 1)+ (~-+ a -/3")6 In f~+ ~g ln  1) 

- (p  + e + g )A In f~] (7) 

= 1)-2{A + (D In 1))z~ In 1) - (6 In f~)6 In l) 

+�89 In 1) + (/~ In 1))c5 In 1) + DA In 1) - (DIn  1))a In 1) 

+ / 2 D l n 1 ) + ( a  - ~ r - / ~ ) 6 1 n 1 ) - - k g l n 1 ) + ( e + g - p ) A l n 1 ) ] }  (8) 

That the remaining discrete operations yield no further equations is easily 
verified. Conjugation leaves equations (5a), (5a'), (7), and (8) invariant and 
interchanges (5a*) and (5a'*). Equation (6a) and its star transform are the 
same, as seen with the aid of a commutator equation applied to 1). Similarly, 
the star operation applied to equations (6a'), (6fi), (6fi'), (7), and (8) or the 
prime operation applied to equations (7), and (8) yields nothing new. 

For arbitrary Wo, fro, let us define 

A = 1)-W~ ~ = l,)-r 

A general diagonal element can then be decomposed into a product of 
(from right to left) a boost-rotation, a conformal rescaling, and a pure spin 
transformation as follows: 

{(o :),(o 
={wI, w I} 0 1)-1-% , 1)-1-% 

The diagonal transformation determines the pure spin transformation essen- 
tially uniquely, up to a factor of { - / , - I } ,  but the conformal rescaling 
depends on the choice of Wo and w0. 
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We shall be interested in scalar functions r/ that transform properly 
under a general diagonal transformation as 

= a rtiSd 't~r/ (9) 

The set of numbers (r, s, t, u) in equation (9) are the weights of  r/. An 
equivalent set of weights (p, q, m, n) may be defined by 

p = r -  t, q = s - u ,  m = r + t ,  n = s + u  (10) 

Both sets of weights are given in Appendix B for various quantities of 
interest. 

In terms of  f~, to, A, .~ and the weights p, q, m, n, equation (9) can be 
expressed as 

: m P . ~ q ~ ' ~ ( w ~ 1 8 9 1 7 6 1 8 9 1 8 9  m--n~" I (11) 

If  we consider only boost-rotations (for which f~ = to = 1), we see immedi- 
ately from equation (11) that p and q are the G H P  weights, i.e., � 8 9  
is the spin weight and l (p  + q) the boost weight. If we consider only a pure 
spin transformation (for which A = A = f~ = 1), then equation (11) becomes 

= to m - - n  

Hence m - n, i.e., r +  t - s - u, is the pure spin weight, which must vanish for 
tensor-related quantities such as the spin coefficients. 

On the other hand, the power of 1~ in equation (11) depends on the 
choice of  Wo and fro. It seems natural to define the conformal weight of  r/ 
to be - l ( m  + n). Contrary to standard usage, the power of f~ in equation 
(11) is not called the conformal weight of  r /unless the choice Wo = fo = -�89 
is made, i.e., unless the conformal rescaling is taken to be {f~-1/2/, 1~-~/2i}. 

4. DIFFERENTIAL OPERATORS 

In equation (5.6.33) of Penrose and Rindler (1984), they define 
operators Iac, la', 0c, 0'c which are conformally covariant generalizations of 
the GHP  operators. Since, according to equation (11) the power w of I) is 
given by 

w : p(wo +�89 q(ffo+ �89 -�89 + n) 

it is easily verified that in terms of the GHP operators they are given by 

~ = ~ - p ( r + s )  (12a) 
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I:,'~ = Ia'+/z(t + u) (12a') 

~ = c~ - ~-(r + u) (12a*) 

~'~ = ~ '+ 7r(s + t) (12a'*) 

These equations confirm the claim made that the new operators are indepen- 
dent of the choice of Wo and fro. That this is so should come as no surprise, 
since two choices of Wo and Wo are related by a boost-rotation and the 
operators transform as properly weighted quantities under boost-rotations. 

As also mentioned in Penrose and Rindler (1984), conjugation does 
not leave Iac and Ia'~ invariant and does not interchange ~ and/~'. However, 
an equivalent set of operators with the desired properties can easily be 
found. They are the operators D~, A ,  8~, 8~ defined by 

D~ = D + e ( t  - r) + g(u - s) - �89  + s ) (p  + ~) (13a) 

A~ = A + y ( t  - r) + ~(u - s) + �89 + u)(/x +/~) (13a') 

8 c = 8 + f l ( t - r ) + 6 ( u - s ) - � 8 9  (13a,) 

8 c = g + a ( t - r ) + ~ ( u - s ) + � 8 9  (13a'*) 

These differential operators are properly weighted quantities, with weights 
as shown in Appendix B, when acting on tensor-related (scalar) quantities 
or when the diagonal transformation does not contain a pure spin transfor- 
mation component (to = 1, O= 0). Under these circumstances all four 
operators have a conformal weight o f - 1 .  However, under a general diagonal 
transformation, the transformation law, for any scalar function ~7, is given 
by 

A A 

D~q = a r+I dS+l d'dU[ Dc~7 + ( r +  t -  s - u ) ~ D  In to] (14) 

and its primed, starred, and primed starred versions. Note that r +  t - s - u  
is the pure spin weight m - n  of r/. 

To conclude this section, we rewrite the Maxwell equations in terms 
of our new operators. They are 

Dc&l - g~&o = �89 + ~)&o + (p - / ~ ) &l -  Kth2 (15a) 

along with equations (15a'), (15a*), (15a'*), and their conjugates. Although 
the first four of these equations are slightly more involved, the conjugate 
equations are less involved than when written in terms of the operators 
Iac, Ia'c, 0c, c~'. Keeping track of conjugate equations is, in general, easier 
with our choice of operators. 
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5. C O M M U T A T O R S  

The commutators for the differential operators De, Ac, 8~, gc are worked 
out in a straightforward, if lengthy, manner with the help of the NP 
commutators, equations (NP4.4). They are given by 

0 = [8~D~ - Or162 +�89 + gr)Dcn - � 8 9  - ~)Sdq + o-gr - KA~rl 

+ �89 -�89 + n)9/] (16a) 

0 = [g~Oc - O~g~]n + �89 rr)D~? +�89 - ~)g~r I + d'Scr 1 - ffAcrl 

+ �89 + q 5g"'; -�89 + n)~]  (16a) 

0 : [ g<A< - Acg<] r / -  �89 + 4)A~r/+ �89 - /2  ) g~r/- AS~r/+ vDcr/ 
1 r + ~r/[-p~l  + q ~ - � 8 9  + n)W] (16a') 

+ �89 - q~'~ -�89 + n)9/'~'] 06a ' )  

0 = [A~D~ - DcA~] n + ( r  + ~r)gc~7 + (~r + 4)8~rl 

+ln [p~3  + q533 + �89 + n)~3] (17a) 

o = [gca~ - a~g~]n+ (p - ~ ) a o n  + (~ -/7,)D~rl 

+�89 [ pi3* - q:g* +�89 + n)~*] (17a*) 

That the remaining discrete transformations yield no further equations is 
easily verified, as in Section 2. The quantities 531, ~2, ~3, ~ ,  EL, t3", 91, 9/', 
their conjugates, and ~3 and ~* are independent, properly weighted quan- 
tities with weights as shown in Appendix B. Their transformation properties 
under the remaining discrete transformations can be found in Appendix A; 
for example, 9/* = -9.1. In terms of NP variables, these quantities are given 
by 

9/ = D (  r -  ffr) - a ( p  + fl) + (p  + ~)(  & + fl - ~ ) + ( ' f r -  "r)(~ + e - s 

- K 0 * + ~ ) + ~ ' 0 r - 4 )  

= D ( / z + / ~ ) + A ( p + ~ ) - ( p + ~ ) ( 7 +  ~) 

+ 0* + ~)(e + ~) + 6" + ,~)(4- r~) + (r - ~)(4+ ~) 
~'~1 : l~(p .q_/~) + �89 - r) - 2(9/3 - &)  - �89 (43' +/z +/~) 

+ �89 + 7r - 4)+�89 -/3 - 8) + �89 + 3/3 - 8) 
3 -  1 + e(~rr + ~ r  ~ 2 a )  + g ( � 8 9  2/3 ) 

~2 = 2(Da - ge) + �89 - 4) - �89 + fi) + �89 +/2 + 4 7) 

+ � 8 9  r - 4 / 3 ) + � 8 9  -2 r r  + 4)+�89 + f i -  rr) 

+ e(4a +2]~ 3 ' '  ( - 2 a - 2 )  - ~ r - ~ r )  + g +�89 

~33 = �89 + p + ~) - �89 +/x + fl,) - �89 + 3~)(4e + p +/~) 

- �89 + g)(4y +/x +/2) + (r  + r~)(2a + or) + (4+ rr)(2/3 - r~) 
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along with the primed, starred, primed starred, and conjugate versions 
thereof, as appropriate. 

That these quantities "transform properly" is evident from the commu- 
tator equations that define them. Alternatively, this may be seen by working 
out NP commutators of In f12 as well as of ln(ad -~) using equations (3) 
and (4). For example, applying 8 and D, respectively, to (3a) and (3a*) 
leads to the transformation law for the commutator quantity 92. 

6. RICCI TENSOR EXPRESSIONS 

The NP Ricci tensor components do not transform properly under all 
diagonal transformations. Indeed, their transformation laws are given by 
equations (5)-(8). If, in these equations, we substitute for the derivatives 
of In ~ the expressions that are readily obtained from equations (3), we 
can easily show that the following combinations are properly weighted 
quantities: 

~ ~o = ~oo + �89 D(P + fi)  + (p + # ) (  e + ~)  + �89 + fi)2 + K ( ~r - "F) + #, ( Er - r)] 
(18a) 

along with ~ 2 ,  ~ 2 ,  ~ o  defined by equations (18a'), (18a*), (18a'*); and 

~ 1  = ~ol + �89  ~') + (e - ~)(~'- ~) +�89 + ~)(p + ~) + K (g +/~)] (19a) 

along with ~ ,  ~ o ,  ~ 2  defined by equations (19a'), (19~), (19~'); and 

+ p(~ + ,~) + ~(/3 - ,~ ) -  �89 ~-)(~- ~-) +�89 +,a)(~ +,a)] (20) 

A c = A + �88 - D/x + 8~r + g6 - /~ ( e  + ~)+ rr(/3 - 8) 

+ ~ ( # -  ~ ) -  # ( y +  ~) +l(p + r;)(tz + #) + �89  ~ ) 0 : -  ~r). (21) 

Conjugation applied to equations (18) yields nothing new. The star 
operation applied to equations (19) yields expressions related to the ones 
of (19) by 

qb* ~ _ ,-r,~ - �89 (22a) 01 "x~ 01  - -  

along with (22a'), (22~), (22~'). Similarly, applying the discrete transforma- 
tions to (20) and (21) yields expressions related to the previous ones by 

, the equations 

, : I , ~  = , t , l * ?  ~ , �9 " ~  - a , ~  .,_-,~, = l f f ~ l l ' ~ - Z ( ~  - - ~ 3 ) ,  I f f ~ l l  - -  "X" l l - -  4,*,v 

(23) 
A,C= -A  ~, 3,~ = A~ + �88 A '~ = A~ +�88 ~)  

along with their transforms under the remaining discrete operations. 
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Some of the Ricci tensor expressions just defined do not transform 
under discrete transformations as simply as the corresponding components 
of the Ricci tensor. Although it would be easy to define such quantities, we 
chose not to do so, since the Bianchi identities would be more cumbersome 
in terms of them. 

7. THE NP EQUATIONS 

The seven spin-coefficient equations in the sets (v)-(viii) of Section 2 
can now be written as follows: 

(NP4.2q-h) ~*-23= DcOz-~)+Ac(O-~)-a~(rr+~)-gc(r+r 
(24) 

(NP4.2d) 522 = �89 + l (p  - t~)(Tr + ~ ) -  2KA +2qb~0 (25a) 

(NP4.2e) 521 = - 19~ + K (/z - /2)  - 0.(rr + ~) - 2~1 (26a) 

(NP4.2f) 523 = 2(ac - O~1- ~2 + Kv)-10"+ ~)(~;+ rr) (27a) 

along with equations (25a'), (26a'), (27a*), and their conjugates. From 
equation (24) and its conjugate we deduce that 

23 = ~c(?+ rr) + 6c(~'+ ~) (28a) 

23* = D~(/z - /2)  + Ac(p --/;) (28a*) 

The remaining eleven equations are 

(NP4.2a) �89 (p - ~) - ~K = 0~o + 0"6 + �89 ( ~ + ~ )  

--�89 Z~)+~(p _~)2 (29a) 

(NP4.2c) �89 + ~) - A~K = qb~l + ~ + o-(zr + 4) 

+ 1(~. + z~)(p -/~) (30a) 

(NP4.2b) D~0. - 6~K = q% (31a) 

( N P 4 . 2 q + h )  gr  ~ )  - a~(p - ~;) = 4A~ + 2,I~2 + 2X0. -  2K~, 

+ � 8 9  ~ ) ( ~ +  rr) 

_ l (p  -/~)(/x - /2)  (32) 

along with (29a'), (29a*), (29a'*), (30a'), (30a*), (30a'*), (31a'). In addition 
to these 18 spin-coefficient equations, we also have their conjugates. In a 
manner analogous to what is done in the GHP formalism, we eliminate the 
commutator quantities 9~, 23, etc., from the formalism by substituting 
equations (22) and (25)-(28) into the commutator equations (16) and (17). 
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It remains to show the form the Bianchi identities assume in the 
extended formalism. It suffices to work out one equation in each of the 
three sets and obtain the remaining equations via the discrete symmetries. 
A somewhat  lengthy but straightforward calculation shows that the identities 

~c[(3 la)]  + Dc[(30a*)] - 8c[(29a)] = 0 

Ac[(29a)] - Dc[(32)1 - g~[(30a)] = 0 

lead, respectively, to equations (P1) and a combination of equations (P2) 
and (P3), rewritten in terms of properly weighted quantities. A second, 
independent,  combination of equations (P2) and (P3) is obtained after 
another somewhat  lengthy calculation from the identity 

~c[(16a)] - ~c[(16~)] + D~[(17a*)] = 0 

All this labor results in the following form for the Bianchi identities. 

P I :  ~ ~Iro 4- Dc  ( dP ~o? - "tI~ l ) - t~cCYP ~o 

= - � 8 9  ~ ' ~ ) ~ , o o + O - [ ~ , o + ~ , ~ ] "  ~ ~ * ~  

- ~(p - p)[(I)o, + (I) '1+ 4~ , ]  + K [ 3q ' 2 -  2dP 1"~ c ] (33a) 

P2: D~[2~b*1c-3~2+1~ *] ~ c ~ + 3~[3~1 + (I)ol] - 26cqb l0 - Ac (I) oo 

= 3A~o+�89 - tS)[-9'tt2 -6~b~1 - ~* ]  +�89 + 7) [4dP*l ~ --6~1] 

+ K[6~3 - 3r + dP2*l c]  - -  2 ~ * o  ~ - ~(/.t - / 2 ) ~ ; o  + 2o-~ ~o 

~ c 1 77.)[3(i)  ,o H_ (i) 12 ] ( 3 4 a )  
= - O '~o2+~(r+ ~ ~ *~ 

P3: D ~ ( 3 A ~ + � 8 8  ~ 

= ~ o +  ~ , ~ 2 -  ~4,~ *~ - ~ , ,*o  ~ -  �89 + ~ ) ~  o'1 ~ 

- �89 + r qb*~ - l(p _ f i ) ~ .  (35a) 

along with (33a'), (33a*), (33a'*), (34a'), (34a*), (34a'*), (35a'), (35a*). The 
commutator  quantities ~ and ~ *  that occur in these equations can be 
eliminated with the help of  equations (23). 

8. C O N C L U S I O N  

We have presented an extension of the G H P  formalism that is covariant 
not just under  boosts and rotations, but under all diagonal transformations 
of  the spin frame, including conformal rescalings. All quantities involved 
are properly weighted, obeying the transformation law given by equation 
(9) with the corresponding weights being found in Table I of  Appendix B. 
In particular, the differential operators Dc, Ac, 8c, go, defined by equations 
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(13) as generalizations of the corresponding NP or GHP operators, have 
this property. Although we have presented the complex formalism, the 
specialization to the case of real general relativity is obvious and straight- 
forward. 

Full use is made of the formalism's symmetry under all discrete 
operations, including not only conjugation and the prime operation, but 
also the (modified) Sachs star operations. As a result, all equations of 
interest occur in sets of maximally eight equations such that each member 
of the set can be obtained from any other by applying these discrete 
operations. 

All NP equations are rewritten so that they contain only terms that 
have the same symmetry (if any) under the discrete operations and that 
transform as properly weighted quantities, of the same weight, under 
diagonal transformations. The commutator equations for the four differen- 
tial operators are given by equations (16) and (17), with the commutator 
quantities 9~, ~,  etc., defined by equations (22) and (25)-(28). The spin- 
coefficient equations and the Bianchi identities are, respectively, equations 
(29)-(32) and (33)-(35). 

The contents of the Einstein equations are a bit more difficult to express 
in the extended formalism than in either of the NP or GHP formalisms. 
The properly weighted Ricci tensor expressions must be calculated by 
substituting the appropriate Ricci tensor components into equations (18)- 
(21). However, once this is done, the simplification in comparison with the 
other two formalisms is considerable. This is particularly so when a confor- 
mal spacelike surface (and therefore two null directions) are singled out in 
a natural way as is the case, for example, in considerations of future null 
infinity. 

f 

APPENDIX A. CHANGES UNDER DISCRETE 
TRANSFORMATIONS 

For convenience we summarize here the effect of the discrete transfor- 
mations on some of the NP variables and other quantities introduced in 
the course of this work. 

A1. The Prime Operation 

The prime operation commutes with both the star operation and conju- 
gation. It leaves invariant 

g ab, gab,  O, O, ~-l, to, m ,  n,  q51, x~ 2 , tlP l l , A ,  ~'3 , ~'3 , ~ 3 , "~ a ~ 
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It gives rise to the following interchanges. 

oA<...>lbA, ~A<_.>~A, OA<_._>__I,A, OA<...>_t~ A 

AB __EABr, AB...> _ s  AB ,  
E "> EAB -'> --EAB ~ E EAB "-> --EAB 

m a *-* r~ ~, l~ <--> n~. m~ <--> r ~ ,  D *-> A ,  6 ~-> ~ la*-->n , 

a*->d, ~*-*d,  r*->t, s*->u, p - > - p ,  q - > . q ,  490*->~b2 

u*-->-v ,  o'<-->-A, p * ' * - I X ,  r<->-Tr, e < - > - %  ~ . , - > - a  

~0<-->~4, ~t'1<-->~/3. ~00<-->~=, ~02<-->~20. ~01.-->~21, qb l o *--> (I)12 
D~ <-> A~, 3~ <--> ~ 

9A*+9~', ~ , ~ ' ,  ~ - ->-~ ,  ~ * + - ~ *  

c c ,,.h c <...>oh c c dDc <_._>chc 
O 00 <'-~ O 22,  "w02 "w20 , O 01 <"~ O ~1, "Wl0 "x" 12 

011~...~c 011 . J_a (~3c  1 @ - ~ 3 ) ,  A~ ~--)A~+�88 

A2. The Star Operation 

The star operation commutes with the prime operation, but not with 
conjugation. Instead, we have 

n* = (,i)'* 
for arbitrary 7. Left invariant are 

0 A, A ,  OA ' gA, EAB, O~ ['~ r r, , , 8 A B  , a, d, O, t, p,  m,  n, CI)ol O21  , O l l  , ~ 2  ~ 2  

We also have the following interchanges: 
�9 . .  ~ . 8AB_.> 8 AB,  oA<-'>I'A~ OA<'-->--LA, - -  8 A B ~  - - g A b ,  

g .b _+ _g, ,b,  g~b + --g~b 

la <-'> m '~, n a ~--> rn a, la <--> - m,~ , rh,, o - na , D <--> 6, A o g 

d o d, s o u ,  q-+ - q  

~b,-+ -~b, (i = O, 1, 2), q~, + -q~,, ~o ~-+-4~2 

�9 , ~ - * ,  ( i = 0 , . . . , 4 ) ,  XTr0 <'--> - -  ~ 4 ,  ~ 1 <'--> - - f f 3 ,  ~'t  2 -')' - -  ~ 2  

A+ -A,  qboo<->qbo2, ~ 2 0 < ' - ~ O 2 2 ,  (I)10<'- '~O12 

D ~ 6 ~ ,  A ~ g ~  

9~-~-9~, 9.1'+-9~', ~ - ~ ' ,  ~ *  
G,--,U* 

c c c c c c l ~ t  
A~-->-A, dP~o<-->dPo2, ~2o<-->dP22, dP~o'~->dP~2+~gA 
c c 1 c r ..l_l~'ft c ~ c ..[, 1 ( ~ *  ~ )  

(I) 01 <'~ (I) 01 -~- ~ , (I) 21 <'~ -*~ 21 - -  2 ~.a. , (I) 11 (I) l l  
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A3. Conjugation 

In general, the transform of a variable r/ under conjugation, i.e., under 
a basic reflection (Ludwig, 1987), is denoted by ~. The two variables are 
independent except in the real case where they are complex conjugates. 
Conjugation commutes with the prime operation, but not with the star 
operation. Instead, we have 

' 7 "  : ( ' ] ) ' *  

The variables 

gab, fl, D, A, A, dPoo, ~., qb22, De, Ac, ~, dP~o, qb~2 

remain invariant under conjugation. These self-conjugate variables are real 
in the real case. Conjugation, in general, interchanges tilded and untilded 
variables; it also results in the following less obvious interchanges: 

co --> oo -1 ,  r <--> s, u <--> t, p <---> q, rn <--> n 

dPOl<-->dPlO, qbo2<-->qb20, dP12<-->cb21 
c tq%c _t_ l_~q, ~*- ->-~* ,  AC~->AC+~ *, dP11.-->~11--4,.~ 

iDc  < . ~  el-. c c c c c o2 "~20, ~0~~162 r *-> qb 21 

APPENDIX B. WEIGHTS 

Properly weighted variables are subject, under diagonal transforma- 
tions, to the transformation law given by equation (9). The set of weights 
r, s, t, u and the equivalent set p,  q, - � 8 9  m - n  defined by Eq. (10) 
are listed in Table I for various quantities of interest. The latter set of  
weights give, respectively, the GHP weights, the conformal weight, and the 
pure spin weight. For tensor-related quantities (Ludwig, 1987) the pure spin 
weight vanishes. 

The variables split naturally into sets. In each set the weights of all 
variables could be obtained from those of the first member with the aid of 
the transformation properties of these variables under discrete transforma- 
tions, as given in Appendix A or C. However, for convenience, we list the 
weights of  all variables in each set. 

APPENDIX C. THE EXTENDED GHP NOTATION 

The NP formalism does not employ a new Greek symbol for the 
conjugate of a variable r/, denoting it by ~ instead. The G H P  notation 
makes full use of the symmetry of the formalism under both conjugation 
and the prime operation, denoting the transforms of r/ by ~ and r/ ,  
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Table II 

New notation Usual notation Symmetries 

a , d , a ' , d '  a , d , d , d  a * = a  
o,~ o,~ o ' = o * = o  

~ 12' = 12" = ( / = 1 2  
03 60 O)l = 09" ~ r ~ O) 

r , ~ r ' , F  r , s , t , u  r * = r  

P, P P, q - p ' =  p* = p 

0 A ,  ~ A ,  o t A ,  ~ l f t  0 A ,  ~ A ,  i A ,  ~m o * A  = 0 A 

OA, 6A, O'A, ~'a OA, 6A, --~A, --;A O*A = OA 

eAB, e~,B eAB, eAB --e'AB = e *B  = eAe 
I __ * __ ~ 

gab  gab  gab  - -  - - gab  - -  gab  = gab  

to, r ,  z*, e*  to, no, -too, - ,~o ro = Io 
I a, 1'", I *a, 1 '*'~ I '~, n", m", r~ a ~" = I ~ 

D, D',  D*, D'* D.A,  8, ~ 19 = D 

~o, ,~o, ~ ,  ,~ ~,o, ~o, ~ ,  ~ 4,0* = -,r 
r r r #~1 --r ~ = ~ = ~1  

~, ~', ~*, ,,'*, ; ,  ; ' ,  (;) '*, (;)* ~, -~, ,~, -~,  ;, -~,  ,L - ~  

p, p', p*, p,*, ~, Y, (~)'*, (~;)* p, - ~ ,  ~, - ~ ,  f;, - ~ ,  ~:, - ~  
e, e', e*, e'*, ~, ~', (~)'*, (~)* e, -y,/3, -,~, ~, -~,/~, - ~  

p - ~ ,  ( p -  f;)', (p-~)* ,  p-F;, - ( ~  - ~ ) ,  
(p. - ~;)'* ~-+ ~', - 0 : +  ~ )  (p  - ,6) = - ( p  - . , ; )  

' "' ~o ,qro ,~4 ,~4  ~ *  - ~ o  ~ o ,  ~ o ,  qro, XIro = 

~ 1 , ~  ~ ,  ~'~, 't~s, '~s ~ * = - ~  
~I~2' ~ 2  ' tu  ~t~'r2 * --  ' - ~ a  - ~ : = ~ a  

'~oo, 0~o, 0"o, %0 0oo, %~, 0o2, %0 (boo = %0 
qbot ,~o t ,  ~ " qbo~ ' 0o~ qbo~ ' qb~o ' 0 :~ ,  qbl: q~*~ = q~o~ 

A A - A *  = A'  = A = A 
D~, D~,D~,D~'  * '* D~, A~, ar g~ /)r = D~ 

~ ,~ ,~ ' ,~ t '  ~ , ~ , ~ ' , ~ '  ~ * = - ~  
~ , ~ 3 "  ~ , ~ 3 "  - ~ ' - ~ 3  = ~  

~ , . ~  ~' ~'~, ~*  = - ~  
, ~.~1, ~.~ 1 ~k~l, ~ 1 ,  ~,1, ~, 1 ~ I  ~'~/ 

~ , ~ ,  ~, :~, :~ ~, ~, ( ~ ) * =  ~22, ~2 i22, i22,122, ~22 

~k~3, ~L~ 3 , ,~k~3, ~k~ 3 ~L~ = ,~ 3 
c tc * c  t * c  c c c c ~ c _ c 

(I)00, ~ 0 0 ,  (I)O0 , (I)O0 (1)O0, q~)22, (I)02, ~i)20 ~bO0 --  0 0 0  
~ 0 1 ,  ~ c ;c ~ ;c qT)o1, ~ 1 0 ,  ~ 2 1 ,  (I)~2 ~o~, r Oo~ O*( - ~ - qbo~ +~gd 

�9 ~, ,~,,~ o i ' i -  -,~,,~ + ~ ( ~ * - ~ )  
�9 c c 1 ~ O .  - 0 . + ~ ( 2  - ~ )  

~ c  _ c l~ * ~t~ - - q b H + ~  
A c A c A *c = - A  c 

A'C = A C + ~ ( ~ * - ~ )  

7v= A ~ +�88 
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respectively. It seems logical to have the symmetry of  the formalism under 
the star operation also reflected in the notation. 

Applying the discrete operations to a quantity rl, we obtain, in general, 
eight different quantities, ~1, rl', ~7", rl'*, ~, ~', (~)'*, (~)*. If ~7 is symmetric 
under one or more of these operations, this number is reduced by a factor 
1 for each symmetry. For example, the discrete operations applied to D 
yield only the four independent operators D, D', D*, D'*, i.e., D, A, 3, g. 
This is due to the fact that D is self-conjugate, i.e., /~ = D. As our method 
of labeling equations already suggests, the same reasoning applies to each 
set of equations. For example, there are only two equations in the last set 
of commutator equations, equations (17). This is due to two symmetries, 
namely the invariance of  equation (17a) under both conjugation and the 
prime operation. 

In Table II we list all variables of the formalism (and others) using 
both notations. The variables split naturally into sets of the kind just 
described, each set having one, two, four, or eight members, depending on 
symmetry. These symmetries, if any, are also exhibited. The content of 
Appendix A can be deduced from this table. 
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